Metaheuristics for Score-and-Search Bayesian Network Structure Learning
نویسندگان
چکیده
Structure optimization is one of the two key components of score-and-search based Bayesian network learning. Extending previous work on ordering-based search (OBS), we present new local search methods for structure optimization which scale to upwards of a thousand variables. We analyze different aspects of local search with respect to OBS that guided us in the construction of our methods. Our improvements include an efficient traversal method for a larger neighbourhood and the usage of more complex metaheuristics (iterated local search and memetic algorithm). We compared our methods against others using test instances generated from real data, and they consistently outperformed the state of the art by a significant margin.
منابع مشابه
Learning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis
‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملComparative Analysis of Search and Score Metaheuristics for Bayesian Network Structure Learning Using Node Juxtaposition Distributions
Learning Bayesian networks from data is an NP-hard problem with important practical applications. Metaheuristic search on the space of node orderings combined with deterministic construction and scoring of a network is a well-established approach. The comparative performance of different search and score algorithms is highly problemdependent and so it is of interest to analyze, for benchmark pr...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کامل